Chen Amo	emistry Worksheet Onton's Law and Avogadro's Law + STACO Hour	Date
.1.	A steel cylinder is left out in the sun all day. At 2:00 P.M. cylinder was 1014 kPa at 33.0 °C. What was the pressure the temp was 21.4 °C? τ_2	the pressure of the at 7:00 A.M. when T = 33.5C+ 233.45
	P3 = 976 KPa	= 306.15K = 21,496 + 273.15 = 294.55K
2.	A rigid can of Neon has a pressure of 2.00 atm. at 20.0 °C to atmospheric pressure (1.00 atm.), what happens to the to	C. If the can is opened emperature of the neon?
	P. P. 2.50 th 1.50 th Ta	T,= 20.0°C+ 273.15 = 293.15 K
3.	A balloon has 38.2 g of H ₂ gas at a volume of 428L. What the gas if 10.0 g is left out. $\rightarrow 28.25 \rightarrow 5$	38.29 Ha Imol Ha = 18.9 mg
4.	How many moles of N_2 gas will you have if 2.00 moles w balloon and the volume was increased to 750.0 mL. $\sqrt{2}$	28.23 H 1 1 1 H 2 = 14,0 h as placed in a 385 mL A 2 2 4 5
	$\frac{V_1}{h_1} = \frac{V_2}{h_2} \qquad \frac{385 \text{ mL}}{2.50 \text{ mass}} = \frac{750 \text{ ms}}{h_2}$	$h_3 = 3.90 \text{ modes}$
5.	Calculate the pressure of a gas that occupies a volume of 1 of 95.0 kPa, it occupies a volume of 219 mL.	
	P, V, = PoV2 (P)(125mL) = (75.	125 mb (219 mb)
5.	If a gas occupies a volume of 733 mL at 10.0 °C, at what will it occupy a volume of 1225 mL if the pressure remain	temperature, in °C, s constant.
		· ·

$$\frac{V_{1}}{T_{1}} = \frac{V_{2}}{T_{3}}$$

$$\frac{733mL}{283.15K} = \frac{1225mL}{T_{3}}$$

$$= 283.15K$$

$$T_{3} = 473K \text{ or } 200^{\circ}C$$