1) Consider the equation $y = \frac{5}{x-3} + 4$. Give the equations for the asymptotes of the graph.

$$X = 3$$

 $y = 4$

- 2) Suppose $T:(x,y) \to (x+5,y-2)$ is applied to the graph $y = \sqrt{x}$.
- a) Write an equation for the image.

b) What are the coordinates of the vertex of the image?

3) The graph of a function F is shown below. Sketch a graph of its image under the transformation S when S(x,y) = (3x,-2y). Be point specific (3 points) when graphing.

$$(0,1) \rightarrow (3(0), -2(1)) \rightarrow (0, -3)$$

 $(1,0) \rightarrow (3(1), -2(0)) \rightarrow (3,0)$
 $(2,1) \rightarrow (3(2), -2(1)) \rightarrow (6,-2)$

4) Suppose the scale change rule $S(x,y) = \left(\frac{x}{4}, 6y\right)$ is applied to the graph of y = |x|. Write the equation for the image.

5) Suppose the scale change rule $S(x,y) = \left(5x, \frac{y}{2}\right)$ is applied to the graph of $y = \frac{1}{x^2}$. Write the equation for the image.

$$\partial \mathcal{D} = \left(\frac{1}{x}\right)^{2}$$

$$-6e^{-}$$

$$\partial \mathcal{D} = \left(\frac{x}{5}\right)^{2}$$

$$-6e^{-}$$

$$\partial \mathcal{D} = \left(\frac{x}{5}\right)^{2}$$

6) Give a rule for a scale change that has a vertical shrink of 1/5 and a horizontal stretch of 2.

7) Use the original equation:
$$y = 2(x+4)^2 - 2$$
.

a) Find an equation for the inverse.

$$X = 2(9+4)^{2} - 2$$

$$12$$

$$12$$

$$2 = 2(9+4)^{2}$$

$$3 = 2(9+4)^{2}$$

$$3 = 2(9+4)^{2}$$

$$3 = 2(9+4)^{2}$$

$$y + 4 = \pm \sqrt{\frac{x+2}{2}}$$

$$-4$$

$$-4$$

$$\sqrt{\frac{1}{x+2}} + \sqrt{\frac{x+2}{2}} - 4$$

b) Is the inverse a function? Explain.

c) Sketch the graphs of the original and its inverse. Be point specific when graphing.

	ſ	Insere	
X	9	X	5
-4	-2	-2	-4
-3	0	ð	-3
	0	Ø	-5
	,	6	-2
- 2		6	-4
-6	L		
			li .

8) Let
$$f(x) = 6x + 5$$
 and $g(x) = \frac{3}{x}$

a) Find
$$f(g(x))$$

$$6\left(\frac{3}{x}\right) + 5$$

$$\frac{18}{x} + 5$$

b) State the domain of
$$f(g(x))$$

Domain of $g(x)$: $x = 0$

Domain of $f(g(x))$: $x = 0$

Domain of $f(g(x))$: $x = 0$

c) Find
$$g(f(x))$$

$$\frac{3}{6x + 5}$$

d) State the domain of
$$g(f(x))$$

Domain of $f(x)$: All $f(x)$

Domain of $g(f(x))$:

 $f(x) = f(x)$: All $f(x) = f(x)$:

 $f(x$

9) Tell whether the function f with equation $f(x) = 3x^2 - 1$ is even, odd, or neither. Support your answer algebraically.

- 10) A data set has a median of 14 and a range of 30.
- a. Which statistical measures mentioned above would be affected by a **translation** of data?

b. Which statistical measures mentioned above would be affected by a scale-change of data?

11) The graph of function f is shown below.

a) Identify the equation of function f.

$$y = \frac{1}{x^2}$$

b) What symmetries does the graph f have?

c) Give the domain and range of graph f.

12) The graph below is a translation image of the parent function $y = \frac{1}{x}$. Write an

-5

13) Mr. Johnson adjusted the weights of his 14 wrestlers by subtracting 5 pounds from each athlete's weight. The athlete's original weights are described in the initial weight of the table below. Complete the adjusted weight column.

	Statistical Measure	Initial Weight	Adjusted weight
<u>_</u>	mean	160.29	155,29
5	standard deviation	48.41	48.41
C	median	148.5	143.5
5	range	179	179
5	variance	2343.53	2343.53

14) Mr. Johnson will be bringing his wrestlers to Europe. In Europe weight is calculated in Kilograms not pounds. 1 kilogram = 2.2 pounds. Complete the adjusted weight column.

Statistical Measure	Initial Weight	Adjusted weight
mean = 2.2	160.29	72.86
standard deviation	48.41	22,60
median	148.5	67.5
range ÷ 2.2	179	81.36
variance ÷	2343.53	484.20

K = Pouros