FST 10.5 Notes

Topic: Binomial Probabilities

GOAL

This lesson shows why ${}_{n}C_{k}p^{k}q^{1-k}$ works and applies it to a variety of situations.

SPUR Objectives

H Determine probabilities in situations involving binomial experiments.

binomial experiment An experiment with a fixed number of independent trials, each with only two possible outcomes, often called success and failure, and each with the same probability of success.

Vocabulary

binomial experiment

- · Fixed # of repeated trials
 · Fact trial has a possible outcome.
 · P(success) is some in each trial
- otrials are independent

Warm up

A family has 3 children, what is the probability that exactly one child is a boy?

A binomial experiment has the following features:

- 1) There are repeated situations, called trials.
- 2) There are a fixed number of trials.
- 3) For each trial, there are only two possible outcomes, often called success (S) and failure (F).
- 4) The probability of success is the same in each trial.
- 5) The trials are independent events.

Suppose that in a binomial experiment with n trials, the probability of success is p in each trial and the probability of failure is q, where q = 1 - p. Then

$$P(\text{exactly } k \text{ successes}) = {}_{n}C_{k} \cdot p^{k}q^{n-k} = \binom{n}{k} p^{k}q^{n-k}.$$

Binomial Probability Formula (another version of the formula)

$$P = {}_{n}C_{r}p^{r}(1-p)^{n-r}$$

n = # of trials

r = successes

little p = probability of success

1-p = probability of failure

Warm up (Solve using the Binomial Probability Formula)

A family has 3 children, what is the probability that exactly one child is a boy?

A family has 3 children, what is the probability that exactly one child is a boy?

$$h = 3$$

$$r = 1$$

$$\rho = 0.5$$

$$1-\rho = 0.5$$

Example 1

Some hereditary diseases are inherited by <u>one-forth</u> of the offspring of the families in which the hereditary gene is present. If such a family has <u>four offspring</u>, what is the probability that exactly <u>one</u> of the offspring inherits the gene?

$$h = 4$$

$$r = 1$$

$$p = 0.25$$

$$1 - p = 0.75$$

$$p = 0.75$$

Example 2

Suppose you feel that you have a 90% probability of correctly answering any question on an upcoming history test. If there are ten questions on the test, what is the probability that you will correctly answer 80% or more of the questions?

$$h = 10$$

$$r = 8,9,10$$

$$P = {}_{10}C_{8}(0.9)^{8}(0.1)^{2} + {}_{10}C_{9}(0.9)^{9}(0.1)^{1} + {}_{10}C_{10}(0.9)^{10}(0.1)^{10}$$

$$P = 0.9$$

$$1 - p = 0.1$$

$$= 0.1937 + 0.3874 + 0.3487$$

$$= 0.9298$$

10-5 EXIT SLIP

Suppose that the probability of an I phone being defective is 2%, what is the probability that 4 I phones are defective in a shipment of 50 I phones? $= 50^{\circ} (4.02)^{4} (1-.02)^{50-4}$ $= 50^{\circ} (4.02)^{4} (.98)^{46} = .0145$ = 1.5%