FST 2-5 Notes

Topic: Exponential Models

GOAL

Construct mathematical models of situations that are exponential in nature. Given two points of such a model, find an equation of the form $y = ab^x$ by solving a system of two equations with two unknowns.

SPUR Objectives

F Find and interpret exponential regression and models.

Vocabulary

exponential regression half-life

1. The population of a certain cell type was observed to be 100 on the second day, and 2700 on the fifth day. Assuming the growth is exponential, find the number of cells present initially, and the number of cells expected on the seventh day.

$$\begin{array}{c|c}
\hline
DAY & CELLS \\
\hline
AND PROPERTY S

DIVERTY

5-3 = 2700

[3] = (27) 13

[5] = 3

[GRANDET FACQUE$$

ed on the seventh day.

$$y = ab^{x}$$

$$|\infty = a(3)^{3}$$

$$|\alpha = \frac{9a}{9}$$

$$|\alpha = \frac{100}{9} \approx 11.7$$

$$|\text{Start value}|$$

$$y = \frac{100}{9} (3)^{x}$$

$$y = \frac{100}{9} (3)^{7}$$
 $y = 24,300$ CEIIS

on 7th day

Federal obligations

for research (NSF)

(\$ millions)

1690

1785

1868

1882

2040 2149

2188

2249

2289

2506

2726

3044

3260

3609

3771

3743 3791

4051

Exp Reg [r=.989] y=1625.16 (1.556)x

25.16. Ex2 = 321/953,727

So both

LI

Fiscal year

1991

1992

0 1990

3 1993

<u> 1994</u> 5 <u>1995</u>

1996

1997

1999

ル 2001 /₂ 2002

9 1998

lo 2000

13 2003

14 2004

15 2005

KG 2006

17 2007

78 2008

Codex

- 2. The National Science Foundation (NSF) publishes InfoBriefs, a newsletter containing brief reports highlighting results from recent surveys and analyses. The following data are contained in a January 2009 article about Federal R&D funding.
 - a. Use a statistics utility to graph the data and fit an exponential model of the form $f(x) = ab^x$ to the data. Use x as "years after 1990." Report the values of a and b in the exponential model to the nearest thousandth.

data already in L1, L2

view scatter plot 2nd - STAT PLOT ZOOM - 9:ZoomStat

observe scatter plot - does data appear linear? exponential?

find exponential model: STAT - CALC - 0:ExpReg (enter)

Liveres.	
7= 151, 2 x	1 1423.55
r=0.978	2x = 608,606.658

b. Use your graph to describe how well the exponential curve you have modeled fits the points on the scatterplot.

find & graph exponential model: STAT - CALC - 0:ExpReg (enter)
L1,L2,Y1 (VARS - Y-VARS - Function - Y1)

$$y = a(b)^{x}$$

$$y = 1625.16(1.055)^{x}$$

$$Y = 0.989 \rightarrow \text{Exp. better}$$

$$y = 1625.16(1.055)^{x}$$

c. Calculate the residuals for 1998 and 2004.

find ordered pairs (predicted values) for model: 2nd TABLE

adjust table: 2nd TBLSET (TbleStart = ___)

$$y = 1625.16(1.052)^{8}$$
 $y = 2512.84$
 $y = 3484.91$
 $y = 3484.91$

3. A certain substance has a half-life of 24 years. If a sample of 80 grams is being observed, how much will remain in 50 years? When will only 5 grams remain?

$$y = ab^{2}$$

 $0.5 = 1(b)^{24}$
 $0.5 = (b^{24})^{64}$
 $0.5 = (b^{24})^{64}$
 $b = 0.9715$

$$\frac{5}{80} = 0.9715^{\frac{1}{5}}$$

$$\frac{5}{80} = \frac{1000.9715^{\frac{1}{5}}}{1000.9715}$$

$$\frac{1000}{1000.9715} = \frac{1000.9715}{1000.9715}$$

$$\frac{1000.9715}{1000.9715}$$