FST 3-4 Notes

Topic: Symmetries of Graphs

<u>GOAL</u>: Review the ideas of reflection and rotation symmetry, apply them to graphs of functions, and to the ideas of even and odd functions.

SPUR Objectives

D Describe the effects of translations on functions and their graphs.

E Describe and identify symmetries and asymptotes of graphs.

I Recognize functions and their properties from their graphs.

Vocabulary

reflection-symmetric MAPPED OFFI STATE OF SYMMetry REFLECTION OF STATE OF SYMMETRY Symmetric about a point G_7 (80° Rotation point symmetry even function G_7 (80° Rotation G_7 (80

The line of symmetry can be any line in the plane

Center of symmetry for a figure = the center of rotation of 180° under which the figure is mapped onto itself

Warm-Up

1. How many symmetry lines does a square have? 4

2. How many centers of symmetry does a square have?

3. How many symmetry lines does an isosceles trapezoid have?

4. How many centers of symmetry does an isosceles trapezoid have? *O*

The diagram at the right shows half of a graph.

Step 1 Copy the diagram. Draw the other half of the graph so that the result is point-symmetric about the origin. Label this half A.

Step 2 Draw the other half of the original graph so that the result is symmetric with respect to the y-axis. Label this half B.

Step 3 Draw the other half of the original graph so that it is symmetric over the x-axis. Label the graph C.

Step 4 What symmetries does the union of graphs A, B, and C and the original graph possess?

The reflection image of (x, y) over the x-axis is $(x_1 - y)$.

The reflection image of (x, y) over the y-axis is $(x_1 - y)$.

The image of (x, y) under a rotation of 180° about the origin is (-x, -y)

The union is reflection symmetric over both ages and point symmetric about the origin.

Symmetries of Graphs

neocing Sinners

A graph is symmetric with respect to the y-axis if and only if for every point (x, y) on the graph, (-x, y) is also on the graph.

A graph is symmetric with respect to the x-axis if and only if for every point (x, y) on the graph, (x, -y) is also on the graph.

dennika koraten e

A graph is symmetric to the origin if and only if for every point (x, y) on the graph, (-x, -y) is also on the graph.

Proving that a graph has symmetry:

Example 1: Prove that the graph of $y = \sqrt{36 - x^2}$ is symmetric to the y-axis. y-axis: (x15) -> (-x15) V36-x2 V36-(-x)2

 $y = \sqrt{3(-x^2)} \quad (x_0) \Rightarrow (x_0 - 3) \quad \text{for give:} \quad (x_0) \Rightarrow (-x_0 - 3) \quad \text{for give:} \quad (x_0) \Rightarrow (x_0 - 3) \quad \text{for give:} \quad (x_0) \Rightarrow (x_0 - 3) \quad \text{for give:} \quad (x_0) \Rightarrow (x_0 -$ Is $y = \sqrt{36 - x^2}$ symmetric with respect to the x-axis? The origin?

Even and Odd Functions

Colembia e de la colombia del colombia de la colombia de la colombia del colombia de la colombia della della colombia de la colombia de la colombia de la colombia de la colombia della co

A function is an even function if and only if for all values of x in its domain, f(-x) = f(x).

* An even function has symmetry with respect to the y-axis.

Confidential and the form

A function f is an odd function if and only if for all values of x in its domain, f(-x) = -f(x).

* An odd function has symmetry with respect to the origin.

Example 2: Determine (algebraically, not graphically) whether the function

 $f(x) = x^3 - 5x$ is odd, even, or neither.

000: f(-x) = - f(x)

(-1)2-5(-x) - (x3-5x)

you add function

EVEN: f(-x)= f(x)

 $(-y)^3 - 5(-x)$ $x^3 - 5x$

Sec 3-4 p.4

Example 3: Consider the function H with $y = H(x) = \frac{3}{x-8} + 9.5$ a. Give equations for the asymptotes of its graph.

* Hint: Identify the parent function first!

y = 1/x

b. Describe any lines or points of symmetry.

