FST 3-5 Notes

Topic: The Graph Scale-Change Theorem

GOAL: Apply the Graph Scale Change Theorem to all relations.

SPUR Objectives

C Use the Graph Scale-Change Theorem to find transformation images.

D Describe the effects of translations and scale changes on functions and their graphs.

J Apply the Graph-Translation Theorem or the Graph Scale-Change Theorem to make or identify graphs.

Vocabulary

horizontal and vertical scale change scale factor size change

horizontal scale factor A transformation that maps (x, y) to (ax, y) for all (x, y), where $a \neq 0$ is a constant.

vertical scale change A transformation that maps (x, y) to (x, by), where $b \neq 0$ is a constant.

scale change (in the plane) A transformation that maps (x, y) to (ax, by), where $a \neq 0$ and $b \neq 0$ are constants.

scale factor The nonzero constant by which each data value is multiplied in a scale change.

size change A scale change in which the scale factors are equal; a transformation that maps (x, y) to (kx, ky), where k is a nonzero constant.

- 1 y=(2x)2-4

Horizontal Scale Changes

- 1. Use your calculator to graph $y = x^2 4$. Sketch the graph in the space provided at the right. Be sure to label all intercepts (x and y).
- 2. Graph $y = (2x)^2 4$ on the same set of axes.
- Q1: How did the equation change?

X multiplied by Q, then squared

- Q2: What changed in your graph? How did it change? Horizontal Shrink by à
- Q3: What stayed the same in graphs from steps 1 & 2.

Vertex (0,-4) same

- 3. Graph $y = \left(\frac{x}{2}\right)^2 4$ on the same set of axes above.
- Q4: How did the equation change in step 3 from the original equation in step 1?

disided by 2 then Squared

- Q5: What changed in the graph? How did it change? Horizontal States of 2
- Q6: What stayed the same in all 3 graphs?

Vertex 6,-4) Same for all grans

Vertical Scale Changes

- 4. Graph $y = x^2 4$ at the right again. Be sure to label all intercepts (x and y).
- 5. Graph $2y = x^2 4$ on the same set of axes. (Hint: Solve equation for y) フ= ギーマ

Q7: How did the equation change?

Q8: What changed in your graph? How did it change?

Vertical Shruk by -

Q9: What stayed the same in graphs from steps 4 & 5.

X-interests arc same

- 6. Graph $\frac{y}{2} = x^2 4$ on the same set of axes above. (Hint: Solve equation for y)
- Q10: How did the equation change in step 6 from the original equation in step 4? multiplied by a
- Q11: What changed in the graph? How did it change? Vertee! Stretch 52
- Q12: What stayed the same in all 3 graphs?

X-interests are same

Graph Scale-Change Rule: S(x, y) = (ax, by)

Where:

a

is the horizontal scale factor

is the vertical scale factor b

Recall

Translation Rule: $T(x,y) \to (x+h,y+k)$ In equation form, the 'opposite' happened – addition in the translation rule corresponded to subtraction in the caustics. to subtraction in the equation

If y = f(x) was translated by the rule above, the new equation would be y - k = f(x - h)

The same 'opposite' happens between the rule for scale change and the equation

Multiplication in rule corresponds to division in equation

Division in rule corresponds to multiplication in equation

From Activity:

$$y = (2x)^2 - 4$$

e Vertical Streton

Additional Example 1

Sketch and compare the graphs of y = |x| and $\frac{y}{4} = |6x|$. Describe the transformation that maps the first graph onto the second.

$$\frac{9}{4} = 16x1$$
 $y = 416x1$

(+,45)

. Horizontal Shrink by 1/6. Oction Stretch by 4

& multiplication in rule is dissist in equation & Division in rule is multiplication in equation

Additional Example 2

The line 41x - 29y = 700 contains the points (39, 31) and (10, -10). Use this information to obtain two points on the line with equation 20.5x - 87y = 700.

$$\frac{41}{3}x - (3)(39)_{3} = 700$$

$$\frac{x}{3} - 3y = 700 \rightarrow -3y = -\frac{x}{3} + 700$$

$$\frac{x}{3} - 3y = 700 \rightarrow -3y = -\frac{x}{3} + 700$$

$$\frac{x}{3} - 3y = 700 \rightarrow -3y = -\frac{x}{3} + 700$$

$$\frac{x}{3} - 3y = 700 \rightarrow -3y = -\frac{x}{3} + 700$$

$$\frac{x}{3} - 3y = 700 \rightarrow -3y = -\frac{x}{3} + 700$$

$$\frac{x}{3} - 3y = 700 \rightarrow -3y = -\frac{x}{3} + 700$$

$$\frac{x}{3} - 3y = 700 \rightarrow -3y = -\frac{x}{3} + 700$$

$$\frac{x}{3} - 3y = 700 \rightarrow -3y = -\frac{x}{3} + 700$$

$$\frac{x}{3} - 3y = 700 \rightarrow -3y = -\frac{x}{3} + 700$$

$$\frac{x}{3} - 3y = 700 \rightarrow -3y = -\frac{x}{3} + 700$$

$$\frac{x}{3} - 3y = 700 \rightarrow -3y = -\frac{x}{3} + 700$$

$$\frac{x}{3} - 3y = 700 \rightarrow -3y = -\frac{x}{3} + 700$$

$$\frac{x}{3} - 3y = 700 \rightarrow -3y = -\frac{x}{3} + 700$$

$$\frac{x}{3} - 3y = 700 \rightarrow -3y = -\frac{x}{3} + 700$$

$$\frac{x}{3} - 3y = 700 \rightarrow -3y = -\frac{x}{3} + 700$$

$$\frac{x}{3} - 3y = 700 \rightarrow -3y = -\frac{x}{3} + 700$$

$$\frac{x}{3} - 3y = 700 \rightarrow -3y = -\frac{x}{3} + 700$$

$$\frac{x}{3} - 3y = 700 \rightarrow -3y = -\frac{x}{3} + 700$$

$$\frac{x}{3} - 3y = 700 \rightarrow -3y = -\frac{x}{3} + 700$$

$$\frac{x}{3} - 3y = 700 \rightarrow -3y = -\frac{x}{3} + 700$$

$$\frac{x}{3} - 3y = 700 \rightarrow -3y = -\frac{x}{3} + 700$$

$$\frac{x}{3} - 3y = 700 \rightarrow -3y = -\frac{x}{3} + 700$$

$$\frac{x}{3} - 3y = 700 \rightarrow -3y = -\frac{x}{3} + 700$$

$$\frac{x}{3} - 3y = 700 \rightarrow -3y = -\frac{x}{3} + 700$$

$$\frac{x}{3} - 3y = 700 \rightarrow -3y = -\frac{x}{3} + 700$$

$$\frac{x}{3} - 3y = 700 \rightarrow -3y = -\frac{x}{3} + 700$$

$$\frac{x}{3} - 3y = 700 \rightarrow -3y = -\frac{x}{3} + 700$$

$$\frac{x}{3} - 3y = 700 \rightarrow -3y = -\frac{x}{3} + 700$$

$$\frac{x}{3} - 3y = 700 \rightarrow -3y = -\frac{x}{3} + 700$$

$$\frac{x}{3} - 3y = 700 \rightarrow -3y = -\frac{x}{3} + 700$$

$$\frac{x}{3} - 3y = 700 \rightarrow -3y = -\frac{x}{3} + 700$$

$$\frac{x}{3} - 3y = 700 \rightarrow -3y = -\frac{x}{3} + 700$$

$$\frac{x}{3} - 3y = 700 \rightarrow -3y = -\frac{x}{3} + 700$$

$$\frac{x}{3} - 3y = 700 \rightarrow -3y = -\frac{x}{3} + 700$$

$$\frac{x}{3} - 3y = 700 \rightarrow -3y = -\frac{x}{3} + 700$$

$$\frac{x}{3} - 3y = 700 \rightarrow -3y = -\frac{x}{3} + 700$$

$$\frac{x}{3} - 3y = 700 \rightarrow -3y = -\frac{x}{3} + 700$$

$$\frac{x}{3} - 3y = 700 \rightarrow -3y = -\frac{x}{3} + 700$$

$$\frac{x}{3} - 3y = 700 \rightarrow -3y = -\frac{x}{3} + 700$$

$$\frac{x}{3} - 3y = 700 \rightarrow -3y = -\frac{x}{3} + 700$$

$$\frac{x}{3} - 3y = 700 \rightarrow -3y = -\frac{x}{3} + 700$$

$$\frac{x}{3} - 3y = 700 \rightarrow -3y = -\frac{x}{3} + 700$$

$$\frac{x}{3} - 3y = 700 \rightarrow -3y = -3y = -\frac{x}{3} + 700$$

$$\frac{x}{3} - 3y = 700 \rightarrow -3y = -3y$$