FST 3-8 Notes

Topic: Inverses of Functions

GOAL:

Define inverse of a function, discuss how to determine an inverse of a function from its graph or by graphing, and then examine the skill of finding an equation of an inverse.

SPUR Objectives

B Find inverses of functions.

F Identify properties of inverses of functions.

I Recognize functions and their properties from their graphs.

K Graph inverses of functions.

Vocabulary

inverse of a function identity function

Mental Math

What operation undoes each action?

- a. adding $\frac{2}{3}$ to a number
- b. multiplying a number

by $\frac{\pi}{2}$

c. squaring a positive number

Inverse of a function: the relation in which the components of all ordered pairs of the function are switched

* every function has an inverse, but not all inverses are functions.

Notation: the inverse of f(x) is denoted $f^{-1}(x)$

*
$$f^{-1}(x) \neq \frac{1}{f(x)}$$
 even though $x^{-1} = \frac{1}{x}$

FST 3-8 Notes

Topic: Inverses of Functions

GOAL:

Define inverse of a function, discuss how to determine an inverse of a function from its graph or by graphing, and then examine the skill of finding an equation of an inverse.

SPUR Objectives

B Find inverses of functions.

F Identify properties of inverses of functions.

I Recognize functions and their properties from their graphs.

K Graph inverses of functions.

Vocabulary

inverse of a function identity function

Mental Math

What operation undoes each action?

ATTERITATION TO THE PROPERTY OF THE PROPERTY O

a. adding $\frac{2}{3}$ to a number

b. multiplying a number

by $\frac{\pi}{2}$

c. squaring a positive number

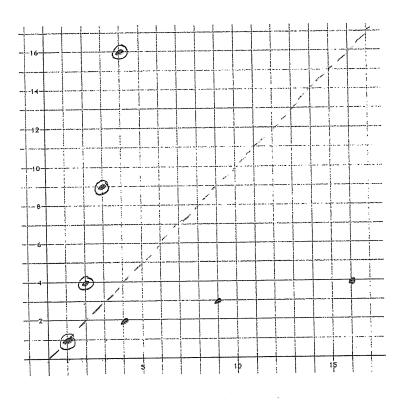
Inverse of a function: the relation in which the components of all ordered pairs of the function are switched

* every function has an inverse, but not all inverses are functions.

Notation: the inverse of f(x) is denoted $f^{-1}(x)$

*
$$f^{-1}(x) \neq \frac{1}{f(x)}$$
 even though $x^{-1} = \frac{1}{x}$

Example 1: Let $h = \{(1, 1), (2, 4), (3, 9), (4, 16)\}$

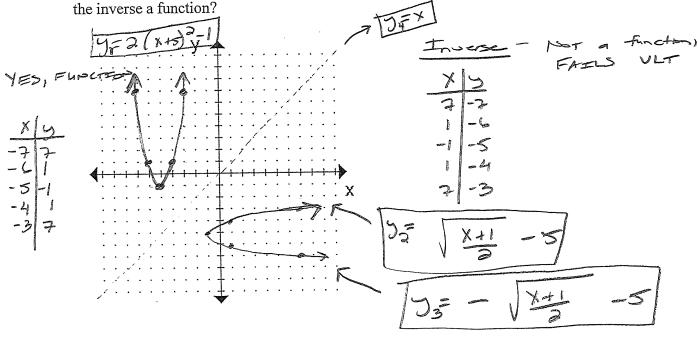

a) Is h a function? Explain.

- b) Describe the inverse of h. \Rightarrow Switch \times and y $h^{-1} = \underbrace{2(1,1), (4,2), (9,3), (14,4)}_{3}$
- c) Is the inverse a function? Explain.

d) Describe h and its inverse in words.

e) Plot the points for h and its inverse. What do you notice?

A Fundion and its
incre retrect over
the line y = x


Example 2: Consider the function $y = 2(x+5)^2 - 1$.

a) Describe the graph of the function.

Parabola, Left
$$5$$
, Down , U. Steten by 2
Vertex $(-5,-1)$, opens up

b) Give an equation for the inverse of the function.

c) Based on your answer to Part a, describe the graph of the inverse of the function. Is

A LOOK AT TABLE OF CALC

HYPERPOLA, L8, L1, V. Street

Example 3: Give an equation for the inverse of the function with equation
$$y = \frac{5}{100} - 1$$

Example 3: Give an equation for the inverse of the function with equation
$$y = \frac{1}{x+8}$$

$$X = \frac{5}{y+8} - 1 \qquad 5 = \frac{(x+1)(y+8)}{y+1} \qquad 5 = \frac{5}{x+1} - 8$$

$$X + 1 = \frac{5}{y+8} - \frac{5}{x+1} = \frac{5}{x+1} - \frac{5}{x+1} = \frac{5}{x+1} - \frac{5}{x+1} + \frac{5}{x+1} = \frac{5}{x+1} - \frac{5}{x+1} + \frac{5}{x+1} = \frac{5}{x+1} - \frac{5}{x+1} + \frac{5}{x+1} = \frac{5}{x+1} = \frac{5}{x+1} + \frac{5}{x+1} = \frac{5}{x+1} = \frac{5}{x+1} + \frac{5}{x+1} = \frac{5}{$$

b) Is the inverse a function?

Inverse Functions and **Composite Functions**

Given any two functions f and g, f and g are inverse functions if and only if f(g(x)) = x for all x in the domain of g, and g(f(x)) = x for all x in the domain of f.

UPPU

Example 4: Use the inverse of Functions Theorem to determine whether f and g are inverses.

$$f(x) = \frac{3x+1}{5-x} \quad g(x) = \frac{5x-1}{x+3}$$

$$f(g(x)) = 3\left(\frac{5x-1}{x+3}\right) + \frac{(x+3)}{(x+3)} = \frac{15x-3+x+3}{x+3} = \frac{x+3}{5x+15-3x}$$

$$(x+3) = \frac{5-5x-1}{x+3} = \frac{5x+15-3x+1}{x+3}$$

$$(x+3) = \frac{16x}{16} = \frac{16x}{16} = \frac{5(3x+1)}{5-x} - \frac{16x}{16} = \frac{16x}{5-x} + \frac{3(5-x)}{5-x} = \frac{16x}{5-x}$$

$$= \frac{16x}{16} = \frac{16x}{16} =$$