FST 6-6 Notes

Topic: Conditional Probability

GOAL

Introduce the language and notation of conditional probability and apply conditional probability to situations where the answers are not at all obvious.

SPUR Objectives

D Calculate probabilities using the definition of conditional probability.

I Calculate probabilities in real situations.

Vocabulary

conditional probability of an event, P(B|A)

Warm-up

Suppose 60% of the singers in a school play are in the school choir. In the school as a whole, suppose 10% of the students are in the choir and 5% are in the school play. Finally, suppose there are 600 students in the school.

a. If a student in the play is randomly chosen, what is the probability that the student is in the choir?

sin the choir?

$$(0.10)(600) = 60$$
 Students in choir

 $(0.05)(600) = 30$ Students in play

 $(0.05)(30) = 18$ In play and choir

 $(0.0)(30) = 18$ In play and choir

in play

b. If a student in the choir is randomly chosen, what is the probability that student is in the play?

c. If a student in the school is randomly chosen, what is the probability that the student is in both the play and the choir?

Conditional Probability

What is the probability that a random student in our school walked to school today?

What is the probability that a student who lives over 1 mile from school walked to school today?

$$P(\omega | m) = \frac{P(\omega \cap m)}{P(m)} = \frac{P(B + m)}{P(m)}$$

Titanic Table 1 below lists the number of passengers and crew who survived and died (the possible outcomes) in the sinking of the Titanic, categorized by status (first-class, second-class, third-class, and crew).

Titanic Table 1: Status and Survival

	First	Second	Third	Crew	
Survived	203	118	178	212	711
Died	122	167	528	673	1490
Scurca: British Wreck Commissionar's Inquiry Report			ne	885	2201

1. What is the probability a passenger survived?

2. What is the probability a passenger survived and was in second class?

Let A = passenger survived

Let B = second class

Then $P(A \cap B)$ = the "intersection" of A and B, what A and B have in common.

$$P(A \cap B) = \frac{N(A \cap B)}{P(+b+1)} = \frac{118}{2201} = 5.42$$

3. What is the probability a passenger survived given they were in second class?

$$P(A|B) = P(A \cap B) = \frac{118}{2201} \cdot \frac{2261}{285} = \frac{118}{285}$$

$$\frac{385}{2201} = \frac{118}{285}$$

DETINITOR PORTITIONAL PROBABILITY

The conditional probability of an event B given an event A, written $P(B \mid A)$, is $\frac{P(A \cap B)}{P(A)}$.

Example 1: Let B = a person eats a good breakfast; Let L = a person eats a good lunch. Suppose in a group of 80 people, 43 eat good breakfasts and good lunches, 21 eat a good breakfast but not a good lunch, 12 eat a good lunch but not a good breakfast, and the rest eat neither a good lunch nor a good breakfast.

a. Find
$$P(B \cap L)$$
 $N(B \cap L)$ $P(L \cap B)$ $P(L \cap B)$ $P(L \cap B)$ $P(B \cap L)$ P

Example 2: An article in the Journal of the American Medical Association in 1997 reported that, when people go to their doctor's office with a sore throat and think they might have strep throat, 30% actually have strep throat. It noted that a current test for strep throat was 80% accurate if you have strep throat and 90% accurate if you do not. What is the probability that a person who receives a positive result from this test does not have the disease?

have the disease?

Have Step 30% Pe not have Step 76%

Positive 80% (.3)(.8)=0.04 (0% (.7)(.1) = 0.07

Negative 20% (.3)(.2) = 0.06 90% (.3)(.9) = 0.63

$$= 100\% =$$

HM

Example 3: Suppose that 1 in 500 airline passengers carry some hazardous material on them when on a plane. Further suppose that an airport screening device accurately identifies 98% of people with hazardous materials that pass through it, and accurately identifies 99% of people without hazardous materials. If a person is identified by the machine as having hazardous materials, what is the probability that the person actually has these kinds of materials?

	HM 500	No HM 499
F dentitred	982 (50)(.98)	
Not identified	¥	$992\left(\frac{499}{5}\right)(.99)$
	,	= ,98802
	= 100%	= 1000

P(HM gion Idantition with HA) P(HM am Io'a with) = .00196 P(IO'N with) = 0.00196 = 0.00196 0.00196 - 16.47