Section 3.2: Graphs of the Trig Functions on the TI-83

We are going to look at the graph of $y = \sin(x)$ and see how we can change that graph using addition, subtraction, multiplication and division.

When we graph the trig functions, we usually use steps of 1 on the y-axis and steps of π on the x-axis. Keeping this in mind, please set your window to the following settings. Your window, then, will look like this:

 $Xmin = -4\pi$

 $Xmax = 4\pi$

 $Xscl = \pi$

Ymin = -5

Ymax = 5

Xres = 1

To graph the following, make sure your calculator is in radian mode!

The Amplitude

1) Graph the equations:

 $y = \sin(x)$

 $y = 2\sin(x)$

2) What relationship do you notice between the two graphs? \$ some x-into \$ same periods & 2 sin x god up to 2 and down

3) Graph the equation $y = 5\sin(x)$ on the same axes as the graphs from #1. How does this relate? A Goes up to 5 and

4) Describe the impact that multiplying $\sin(x)$ by an integer has on the graph.

The Opposite

5) Graph the equations: $y = \sin(x)$

6) What relationship do you notice between these two graphs?

\$ Same x-ints & Same periods reflect our x-axis

· 7) Graph the equations:

 $y = 4\sin(x)$ $y = -4\sin(x)$

8) What relationship do you notice between these two graphs?

A reflect our X-axis

& Same X-into & same periody

9) In general, what does putting a negative in front on the equation do to the graph?

Trig

Y=ASILBX +K Y=Acos BX +K

Section 3.2 – Graphing $y = k + A \sin Bx$ and $y = k + A \cos Bx$

K: Vertical Shift A: amplitude

Period: $\frac{2\pi}{R}$

(no time unless linked to application)

B>1: horizontal Shrink -> period less than 2TT

0<B<1: horizontal Stretch & period greater than

Period (P): time it takes to complete one eyele

Frequency (f): # of cycles per unit of time

 $P = \frac{1}{f} \qquad \qquad P = \frac{2\pi}{R} \qquad \qquad f = \frac{1}{P} \qquad \qquad f = \frac{B}{2\pi}$

1) State the amplitude and period for $y = 3\cos 2x$, and graph the equation for

 $-\pi \le x \le 2\pi$

Amplitude: 3

Period: $\frac{2\pi}{2} = \frac{2\pi}{3} = \pi$

Ax-no at "4 and 3/4
period

2) State the amplitude and period for $y = \frac{1}{3}\sin(x/2)$, and graph the equation for

$$-2\pi \le x \le 6\pi$$

Amplitude:

3) State the amplitude and period for $y = -\frac{1}{2}\sin\left(\frac{\pi x}{2}\right)$, and graph the equation for

$$-5 \le x \le 5$$

Amplitude: $\frac{1}{3}$ \Rightarrow FLEP Period: $\frac{2\pi}{8} = \frac{2\pi}{5} \cdot \frac{2\pi}{7} = 4$

4) State the amplitude and period for $y = -2\cos 2\pi x$, and graph the equation for Amplitude: 2 + FL = Period: 2T = 2T = 1

Period:
$$2\pi = 2\pi =$$

5) Graph $y = -2 + 3\cos 2x$, $-\pi \le x \le 2\pi$

6) Graph $y = 3 - 2\cos 2\pi x$, $-2 \le x \le 2$

13-2008211x, -2 > x > 2 13 *FLIP Amp: 2 Per:-1: 3TT = 1

Pg 147

EXPLORE/DIRCHES

Find an equation of the form $y = A \sin Bx$ that produces the graph shown in the following graphing calculator display:

Is it possible for an equation of the form $y = A \cos Bx$ to produce the same graph? Explain.

y Would to how t

Pg 148

EXPLORE/MECUSS

Find an equation of the form $y = k + A \cos Bx$ that produces the graph shown in the following graphing calculator display:

Is it possible for an equation of the form $y = k + A \sin Bx$ to produce the same graph? Explain.

to translate

Period =
$$B(AT) = (2T)B$$

$$\frac{4TB}{4T} = \frac{2T}{4T}$$

$$B = \frac{3}{3}$$