7.1 - Polynomial Degree and Finite Differences

Objectives:

1. Define polynomial, monomial, binomial, and trinomial

2. Determine degree by finite differences

3. Write polynomials in general form

4. Use finite differences and systems of equations to find a polynomial function that fits a data set.

Definition of a Polynomial

A polynomial in one variable is any expression that can be written in the form

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x^1 + a_0$$

where x is a variable, the exponents are nonnegative integers, the coefficients are real numbers, and $a_n \neq 0$. Each monomial being added to make the polynomial is a term.

Polynomial Function: A function in which a polynomial expression is set equal to a second variable.					
Degree: In avariable polynomial, the power of the term that has the greatest exponent.					
In a variable polynomial, the greatest of the powers in a single term.					
General Form: The form of a polynomial in which the terms are ordered such that the degrees					
of the terms <u>decrease</u> from left to right.					
Monomial: A polynomial withone term.					
Binomial: A polynomial withterms.					
Trinomial: A polynomial with <u>three</u> terms.					

Example 1: Find the difference of the y-values until the differences are constant. What do you notice??

$$y = 3x + 4$$

Degree: __/

X	Y	
2	10	\ -
3 14	13)+3
4	16	+3
5	19) +3
6	22	\rightarrow +3
7	25)+3

$$y = 2x^2 - 5x - 7$$

Degree: ______

X	Y	
3.7	1.88	
3.8	2.88)+1 +.04
3.9	3.92	1.04) +.04
4.0	5.00	11.08
4.1	6.12)+112 \ +.0
4.2	7.28	7+1.16

$$y = 0.1x^3 - x^2 + 3x - 5$$

Degree: _______

		•
X	Y	
-5	-57.5	1.00
0	-5	>+52.5 >+2.5
5	-2.5	125
10	25)+2723 / 100 \ 174
15	152.5)+ 127.5/)+175 >+ 302.5
20	455	7+300

Finite Differences Method: A method of finding the degree of a polynomial that will model a set of data, by analyzing differences between data values corresponding to equally spaced values of the independent variable.

Example 2: Determine what degree the polynomials represented by the tables below will be.

X	Y
10	1018
1-1	1349
12	1746
13	2215
14	2762
15	3393

Example 3: The table below represents the number of diagonals a polygon of n-sides has. Write a function to determine how many diagonals a 35-gon has.

a. Determine the degree of the function.

X [Number of sides]	Y [Number of diagonals]	
3	0) x
4	2	33/1
5	5	5471
6	9	15/1
7	14	3631
8	20	

Because the function is $\frac{quadratic}{q}$, we can model the function as $\frac{q=ax+bx+c}{q}$

Because we have 3 unknown values (a, b, c) in our function, we will need to write three equations.

Pick 3 points to help us write our equation – 1 point per equation. Substitute the x- and y-values into our general function:

$$0 = a(3)^{2} + b \cdot 3 + C \qquad 0 = 9a + 3b + C$$

$$2 = a(4)^{2} + b \cdot 4 + C \qquad 2 = 16a + 4b + C$$

$$5 = a(5)^{2} + b \cdot 5 + C \qquad 5 = 25a + 5b + C$$

Solve the system above [substitution, elimination, or matrices]

Solve the system above [substitution, elimination, or matrices]
$$C = -9a - 3b$$

$$2 = 7a + b$$

$$3 = 16a + 4b - 9a - 3b$$

$$5 = 16a + 2b$$

$$5 = 16a + 4 - 14a$$

$$5 = 2a + 4$$

$$6 = 2a$$

C=0

The function that represents our table: $y = \frac{1}{2}x^2 - \frac{3}{2}x + 0$

Use the equation above to determine how many diagonals a 35-gon has.

$$y = \frac{1}{2}(35)^{2} - \frac{3}{2}(35)$$

$$= \frac{1}{2}(1225) - 52\frac{1}{2}$$

$$= 612.5 - 52.5$$

$$= 560 diagonals$$