WWWWW/\WWWWWMWWWWMWWW
% 7.1 — Polynomial Degree and Finite Differences %
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Objectives:

Define polynomial, monomial, binomial, and trinomial

Determine degree by finite differences

Write polynomials in general form

Use finite differences and systems of equations to find a polynomial function that fits a
data set.

ol e

Diefinition of & Palynomial

& palymomial in ome warfable is any gxpression that can be wriken in thae form

are red
pobmomial iz 2 term.

Polynomial Function: A function in which a polynomial _ xpcé<< on is set equal to a
second variable.

Degree: [na_one -variable polynomial, the power of the term that has the greatest exponent.

Ina mulh — variable polynomial, the greatest _S«m™  of the powers in a single term.

General Form: The form of a polynomial in which the terms are ordered such that the degrees

of the'terms _ decveaSe. from left to right.

Monomial: A polynomial with __pne  term.
Binomial: A polynomial with Awp  terms.

Frinomial: A polynoemial with H.ree.  terms.




Example 1: Find the difference of the y-values until the differences are constant. What do you

notice??
y=3x+4 y=2x"=5x-17 y=0.1x>-x*+3x-5
Degree: / Degree: oL Degree: 3
X % X Y . X Y
3.7 1.88 -5 -57.5
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Finite Differences Method: A method of finding the degree of a polynomial that will model a
set of data, by analyzing differences between data values corresponding to equally spaced values

of the independent variable.

Example 2: Determine what degree the polynomials represented by the tables below will be.

X Y X Y

10 | 1018 -5 | -1250
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Example 3: The table below represents the number of diagonals a polygon of n-sides has. Write
a function to determine how many diagonals a 35-gon has..

a. Determine the degree of the function.

X Y
[Number of sides] [Number of diagonals]
3 0

7 14 M

8 | 20

2
Because the function is i'“éd(ﬂ.{l‘c , we can model the function as J] sax +tbx+

Because we have 3 unknown values (a, b, ¢) in our function, we will need to write three
equations.

Pick 3 points to help us write our equation — 1 point per equation. Substitute the x- and y-values
into our general function:

o=a(s)’+ b3t OF 9a +3h 4 C
2=2a(W>+b-y+C 2 leat+to + C
5 za(s) b5t C §:2544Sb+ C

~ Solve the system above [substitution, elimination, or matrices] | )
C = ~9a -3b 2= "Ta +b s=lpara(d2-1) b=2-7(z
§ -14a
= Jba. +2b EZlbatt ~ bz9-35
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= ,L’/ 4 4’
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The function that represents our table: :}{ =3 X - % X +O =0

Use the equation above to determine how many diagonals a 35-gon has.
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